building_with_espdl-1-supplement

building_with_espdl-1-supplement

因为模型优化和量化部分需要X_cal.pkl和y_cal.pkl文件,而在第一部分训练模型时未生成,因此新建一个项目生成pkl。

初版

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import tensorflow as tf
import numpy as np
import pickle

# 设置图片的尺寸和批量大小
img_height, img_width = 96, 96
batch_size = 16

# 数据集根目录
data_dir = "./leapGestRecog" # 请替换为你的实际路径

# 加载和预处理数据集
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)

# 创建用于保存数据的列表
X_cal = []
y_cal = []

# 遍历训练集,将图像和标签存储到列表中
for images, labels in train_ds:
X_cal.append(images.numpy())
y_cal.append(labels.numpy())

# 遍历验证集,将图像和标签存储到列表中
for images, labels in val_ds:
X_cal.append(images.numpy())
y_cal.append(labels.numpy())

# 将列表转换为 NumPy 数组
X_cal = np.concatenate(X_cal)
y_cal = np.concatenate(y_cal)

# 保存为 pickle 文件
with open('X_cal.pkl', 'wb') as f:
pickle.dump(X_cal, f)

with open('y_cal.pkl', 'wb') as f:
pickle.dump(y_cal, f)

print("X_cal.pkl 和 y_cal.pkl 已成功创建。")

次版

1

原因同模型训练部分,因此修改3通道改为1通道。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import tensorflow as tf
import numpy as np
import pickle

# 设置图片的尺寸和批量大小
img_height, img_width = 96, 96
batch_size = 16

# 数据集根目录
data_dir = "./leapGestRecog" # 请替换为你的实际路径

# 加载和预处理数据集
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)

# 转换为灰度图并归一化
def normalize_img(image, label):
image = tf.image.rgb_to_grayscale(image) # 转换为灰度
image = tf.cast(image, tf.float32) / 255.0 # 归一化到 [0, 1]
return image, label

# 应用转换函数到数据集
train_ds = train_ds.map(normalize_img)
val_ds = val_ds.map(normalize_img)

# 创建用于保存数据的列表
X_cal = []
y_cal = []

# 遍历训练集,将图像和标签存储到列表中
for images, labels in train_ds:
X_cal.append(images.numpy())
y_cal.append(labels.numpy())

# 遍历验证集,将图像和标签存储到列表中
for images, labels in val_ds:
X_cal.append(images.numpy())
y_cal.append(labels.numpy())

# 将列表转换为 NumPy 数组
X_cal = np.concatenate(X_cal)
y_cal = np.concatenate(y_cal)

# 保存为 pickle 文件
with open('X_cal.pkl', 'wb') as f:
pickle.dump(X_cal, f)

with open('y_cal.pkl', 'wb') as f:
pickle.dump(y_cal, f)

print("X_cal.pkl 和 y_cal.pkl 已成功创建。")

2

代码

手动遍历文件系统以加载数据,仅选择前 6 个手势类别。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import cv2
import numpy as np
import pickle

# 设置数据集目录和参数
data_dir = "./leapGestRecog" # 请替换为你的实际路径
img_height, img_width = 96, 96

# 定义需要加载的手势类别(仅加载前6类)
selected_gestures = ["01_palm", "02_l", "03_fist", "04_fist_moved", "05_thumb", "06_index"]

# 初始化数据和标签列表
X_cal = []
y_cal = []

# 遍历每个顶层文件夹(例如 00, 01...)
for subdir in os.listdir(data_dir):
subdir_path = os.path.join(data_dir, subdir)

# 确保顶层文件夹是目录
if not os.path.isdir(subdir_path):
continue

# 仅遍历前六个手势类别文件夹
for idx, gesture in enumerate(selected_gestures):
gesture_path = os.path.join(subdir_path, gesture)

# 确保手势文件夹存在
if not os.path.isdir(gesture_path):
continue

# 遍历每张图像文件
for img_file in os.listdir(gesture_path):
img_path = os.path.join(gesture_path, img_file)

# 读取图像,转换为灰度,并调整大小
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
img_resized = cv2.resize(img, (img_width, img_height))

# 归一化图像数据
img_normalized = img_resized / 255.0
X_cal.append(img_normalized)
y_cal.append(idx) # 使用手势的索引作为标签

# 转换为 NumPy 数组,并调整维度
X_cal = np.array(X_cal).reshape(-1, img_height, img_width, 1)
y_cal = np.array(y_cal)

# 保存为 pickle 文件
with open('X_cal.pkl', 'wb') as f:
pickle.dump(X_cal, f)

with open('y_cal.pkl', 'wb') as f:
pickle.dump(y_cal, f)

print("X_cal.pkl 和 y_cal.pkl 已成功创建,包含前6个手势类别的数据。")

输出

X_cal.pkl 和 y_cal.pkl 已成功创建,包含前6个手势类别的数据。

building_with_espdl-1-supplement
https://blakehansen130.github.io/2024/11/05/generate_calibration_data/
发布于
2024年11月5日
许可协议