1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
| import tensorflow as tf import numpy as np import pickle
img_height, img_width = 96, 96 batch_size = 16
data_dir = "./leapGestRecog"
train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size )
val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size )
def normalize_img(image, label): image = tf.image.rgb_to_grayscale(image) image = tf.cast(image, tf.float32) / 255.0 return image, label
train_ds = train_ds.map(normalize_img) val_ds = val_ds.map(normalize_img)
X_cal = [] y_cal = []
for images, labels in train_ds: X_cal.append(images.numpy()) y_cal.append(labels.numpy())
for images, labels in val_ds: X_cal.append(images.numpy()) y_cal.append(labels.numpy())
X_cal = np.concatenate(X_cal) y_cal = np.concatenate(y_cal)
with open('X_cal.pkl', 'wb') as f: pickle.dump(X_cal, f)
with open('y_cal.pkl', 'wb') as f: pickle.dump(y_cal, f)
print("X_cal.pkl 和 y_cal.pkl 已成功创建。")
|