building_with_espdl-1-failure
1 2 from keras.models import Sequentialfrom keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
1 2 3 import tensorflow as tfprint (tf.__version__) print (tf.keras.__file__)
这两行是上面打印版本和实际路径的输出结果 2.17.0
/home/dahao/anaconda3/envs/lowgensim/lib/python3.10/site-packages/keras/api/_tf_keras/keras/__init__.py
这一步pkl的作用尚且未知,不懂pkl的意义是什么 1 2 3 4 5 6 7 8 9 10 11 with open ('/home/dahao/code/Blogs/ESP-DL/model_development/X_test.pkl' , 'rb' ) as file: X_test = pickle.load(file)with open ('/home/dahao/code/Blogs/ESP-DL/model_development/y_test.pkl' , 'rb' ) as file: y_test = pickle.load(file)with open ('/home/dahao/code/Blogs/ESP-DL/model_development/X_train.pkl' , 'rb' ) as file: X_train = pickle.load(file)with open ('/home/dahao/code/Blogs/ESP-DL/model_development/y_train.pkl' , 'rb' ) as file: y_train = pickle.load(file)
从数据集中选了其中一个文件夹中的其中一部分数据 1 2 data_dir = "./leapgestrecog/leapGestRecog"
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 from PIL import Imageimport numpy as npfor gesture_folder in os.listdir(data_dir): gesture_folder_path = os.path.join(data_dir, gesture_folder) if os.path.isdir(gesture_folder_path): for gesture_instance in os.listdir(gesture_folder_path): instance_dir = os.path.join(gesture_folder_path, gesture_instance) if os.path.isdir(instance_dir): for image_file in os.listdir(instance_dir): image_path = os.path.join(instance_dir, image_file) image = Image.open (image_path).convert("L" ) image = image.resize((96 , 96 )) X.append(np.array(image)) y.append(gesture_instance)
1 2 3 4 X = np.array(X) y = np.array(y)
检验数据集形状和标签形状 1 print (f"数据集形状: {X.shape} , 标签形状: {y.shape} " )
数据集形状: (20000, 96, 96), 标签形状: (20000,)
1 2 3 4 5 6 from sklearn.model_selection import train_test_split ts = 0.3 X_train, X_test1, y_train, y_test1 = train_test_split(X, y, test_size=ts, random_state=42 ) X_test, X_cal, y_test, y_cal = train_test_split(X_test1, y_test1, test_size=ts, random_state=42 )
cnn算法部分 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 print (tf.__version__) model = Sequential() model.add(Conv2D(32 , (5 , 5 ), activation='relu' , input_shape=(96 , 96 , 1 ))) model.add(MaxPooling2D((2 , 2 ))) model.add(Dropout(0.2 )) model.add(Conv2D(64 , (3 , 3 ), activation='relu' )) model.add(MaxPooling2D((2 , 2 ))) model.add(Dropout(0.2 )) model.add(Conv2D(64 , (3 , 3 ), activation='relu' )) model.add(MaxPooling2D((2 , 2 ))) model.add(Flatten()) model.add(Dense(128 , activation='relu' )) model.add(Dense(6 , activation='softmax' )) model.compile (optimizer='adam' ,loss='sparse_categorical_crossentropy' ,metrics=['accuracy' ]) model.summary()
这部分是cnn算法的输出结果,和原作者的相吻合 2.17.0
Model: "sequential_8"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ conv2d_24 (Conv2D ) │ (None , 92 , 92 , 32 ) │ 832 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d_24 (MaxPooling2D ) │ (None , 46 , 46 , 32 ) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout_16 (Dropout ) │ (None , 46 , 46 , 32 ) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d_25 (Conv2D ) │ (None , 44 , 44 , 64 ) │ 18,496 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d_25 (MaxPooling2D ) │ (None , 22 , 22 , 64 ) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout_17 (Dropout ) │ (None , 22 , 22 , 64 ) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d_26 (Conv2D ) │ (None , 20 , 20 , 64 ) │ 36,928 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d_26 (MaxPooling2D ) │ (None , 10 , 10 , 64 ) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ flatten_8 (Flatten ) │ (None , 6400 ) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_16 (Dense ) │ (None , 128 ) │ 819,328 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_17 (Dense ) │ (None , 6 ) │ 774 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 876,358 (3.34 MB)
Trainable params: 876,358 (3.34 MB)
Non-trainable params: 0 (0.00 B)
尝试解决部分,未成功 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X_train = X_train.reshape(X_train.shape[0 ], 96 , 96 , 1 ) X_test = X_test.reshape(X_test.shape[0 ], 96 , 96 , 1 ) X_train = X_train.astype('float32' ) / 255.0 X_test = X_test.astype('float32' ) / 255.0 from keras.utils import to_categorical y_train = to_categorical(y_train) y_test = to_categorical(y_test) history = model.fit(X_train, y_train, epochs=5 , batch_size=64 , verbose=1 , validation_data=(X_test, y_test))
一直显示这部分报错结果 ---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[272], line 11
9 # 对标签进行编码
10 from keras.utils import to_categorical
---> 11 y_train = to_categorical(y_train)
12 y_test = to_categorical(y_test)
14 # 训练模型
File ~/anaconda3/envs/lowgensim/lib/python3.10/site-packages/keras/src/utils/numerical_utils.py:86, in to_categorical(x, num_classes)
84 x = backend.numpy.reshape(x, newshape)
85 return backend.nn.one_hot(x, num_classes)
---> 86 x = np.array(x, dtype="int64")
87 input_shape = x.shape
89 # Shrink the last dimension if the shape is (..., 1).
ValueError: invalid literal for int() with base 10: '01_palm'
numpy.ndarray
今日有效学习链接: 1、本文基于并且想尝试复现的github文档:https://github.com/alibukharai/Blogs/blob/main/ESP-DL/building_with_espdl.md 2、No module named ‘tensorflow.keras‘报错信息的解决方法:https://blog.csdn.net/Zinnir/article/details/125999939?fromshare=blogdetail&sharetype=blogdetail&sharerId=125999939&sharerefer=PC&sharesource=m0_60571820&sharefrom=from_link 我没有用python,我用的是shell,原理相同 3、kaggle怎么下载数据集?https://blog.csdn.net/weixin_73577120/article/details/143170847?fromshare=blogdetail&sharetype=blogdetail&sharerId=143170847&sharerefer=PC&sharesource=m0_60571820&sharefrom=from_link
原来失恋是这种感觉,也有可能我本来就从未得到过吧……一直是我在自我幻想罢了,无所谓,短时间我不会再相信爱情了…… 人,总是要向前看的,找不到答案的话就找自己吧!